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On the Distribution of Lattice Points in Thin Annuli

C. P. Hughes and Z. Rudnick

1 Introduction

LetN(t) be the number of integer lattice points in a disk of radius t centered at the origin.

Thus, N(t) =
∑

n≤t2 r(n), where r(n) is the number of ways of writing n = x2 + y2 as a

sum of two squares. As is well known,N(t) is asymptotic to the area πt2 of the disk. Much

effort has gone into understanding the growth of the remainder term. Heath-Brown [9]

considered the distribution of the normalized remainder term (N(t)−πt2)/
√
t and proved

that it has a limiting value distribution in the sense that there exists a probability dis-

tribution function ν such that, for any interval A,

1

T
meas

{
t ∈ [T, 2T ] :

N(t) − πt2√
t

∈ A

}
−→ ∫

A

ν(x)dx, (1.1)

where the measure is the ordinary Lebesgue measure. It is known that ν(x) is not the

Gaussian measure; for instance, the tails have been shown to decay roughly like exp(−x4)

(see [4, 10]).

Bleher, Dyson, and Lebowitz [3, 5, 6] investigated the distribution of a similarly

scaled remainder term of the number N(t, ρ) := N(t + ρ) − N(t) of lattice points in an

annulus of inner radius t and width ρ(t) depending on t. The “expected” number of points

is the area π(2tρ + ρ2) of the annulus. Define a normalized remainder term by

S(t, ρ) :=
N(t + ρ) −N(t) − π

(
2tρ + ρ2

)
√
t

. (1.2)

The picture that emerges is that there is a number of distinct regimes.

Received 1 June 2003. Revision received 12 September 2003.

Communicated by Dennis Hejhal.

 at Princeton U
niversity on June 22, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


638 C. P. Hughes and Z. Rudnick

(1) The “global”, or “macroscopic”, regime ρ(t) → ∞ (but ρ = o(t)). In such case,

Bleher and Lebowitz [6] showed that S(t, ρ) has a limiting distribution with tails which

decay roughly as exp(−x4). In fact, the distribution is that of the difference of two i.i.d.

random variables whose distribution is the limiting distribution of (N(t) − πt2)/
√
t.

(2) The intermediate, or “mesoscopic”, regime ρ → 0 (but ρt → ∞). The variance

of S(t, ρ) is given by [7]

1

T

∫2T

T

∣∣S(t, ρ)∣∣2dt ∼ σ2 := 16ρ log
1

ρ
(1.3)

and Bleher and Lebowitz [6] conjectured that S(t, ρ)/σ has a standard Gaussian distribu-

tion.

(3) The “saturation regime”: here 0 < ρ(t) < ∞ is fixed as t → ∞, where it has

been shown [6] that S(t, ρ) has a distribution with rapidly decaying tails. As ρ → ∞,

the distribution converges to that found in the macroscopic regime, and as ρ → 0, it

converges to the conjectured mesoscopic distribution.

(4) The local regime ρ ≈ 1/t: if the annulus was centered at a generic point rather

than at a lattice point, or if we consider “generic” lattices instead of the integer lattice

Z2, then it is consistent with conjectures of Berry and Tabor [1] that the statistics are

Poissonian (see [8, 12, 15] for some progress on this, as well as [11, 13, 16]).

In this paper, we prove part of the Gaussian distribution conjecture of Bleher and

Lebowitz. We show that S(t, ρ) has a Gaussian distribution when ρ shrinks to zero suffi-

ciently slowly.

Theorem 1.1. If ρ → 0 but ρ� T−δ for all δ > 0, then, for any interval A,

lim
T→∞

1

T
meas

{
t ∈ [T, 2T ] :

S(t, ρ)
σ

∈ A

}
=

1√
2π

∫
A

e−x2/2dx, (1.4)

where σ2 = 16ρ log(1/ρ). �

The structure of the argument is as follows. We replace the sharp counting func-

tionN(t) by a smooth counting function ÑM(t) whose smoothness parameterM = M(T)

depends on T (note that though t and T are formally independent, we always think of t as

being around T). Since we are only interested in ρ → 0, we set ρ = 1/L, where L = L(T)

tends to infinity with T , and we define the corresponding normalized remainder term to

be

S̃M,L(t) :=

ÑM

(
t +

1

L

)
− ÑM(t) −

2πt

L
−
π

L2

√
t

. (1.5)

 at Princeton U
niversity on June 22, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


On the Distribution of Lattice Points in Thin Annuli 639

We compute the moments of S̃M,L(t) when t is chosen at random with respect to a smooth

measure. We show in Section 3 that the mth moment of S̃M,L/σ converges to that of a

standard normal random variable provided L � Tν(m), with 0 < ν(m) < 1/(2m−1 − 1).

Thus, S̃M,L has a normal distribution if L → ∞ but L � Tδ for all δ > 0. In Section 4, we

show that the variance of the difference (S(t, 1/L) − S̃M,L(t))/σ goes to zero, and hence,

S(t, ρ)/σ has a normal distribution with respect to the smooth measure. Finally,we use an

approximation argument to pass from smooth measures to the Lebesgue measure used

in Theorem 1.1.

2 Smoothing

To obtain Theorem 1.1, we will replace sharp cutoffs by smooth ones. First, we will re-

place Lebesgue measure with a smooth average of t around T , that is, we pick t at random

by taking a smooth functionω ≥ 0, of total mass unity, such that bothω and its Fourier

transform ω̂ are rapidly decaying in the sense that for any A > 2,

ω(t) � 1

(1 + |t|)A
, ω̂(t) � 1

(1 + |t|)A
(2.1)

for all t. (In fact, we also chooseω to be supported on the positive reals as this makes the

analysis simpler.)

Define the averaging operator

〈f〉 =
1

T

∫∞
−∞ f(t)ω

(
t

T

)
dt (2.2)

(this is the expected value of f with respect to this measure) and let Pω,T be the associ-

ated probability measure

Pω,T (f ∈ A) =
1

T

∫∞
−∞ 1A

(
f(t)

)
ω

(
t

T

)
dt. (2.3)

(Throughout the paper we will extend N(t), S(t, ρ), and similar functions, initially de-

fined for t > 0, to the whole real line. Since ω(t) = 0 for t ≤ 0, we are free to choose

whichever extension makes the analysis most simple.)

We will also smooth the edges of the circle and show that this modified counting

function has a Gaussian distribution. Let χ be the indicator function of the unit disc, and

ψ a smooth, even function on the real line, of total mass unity, whose Fourier transform

ψ̂ is smooth and has compact support. Define a rotationally symmetric function Ψ on R2

by setting Ψ̂(�y) = ψ̂(|�y|), where |�y| denotes the standard Euclidean norm of �y ∈ R2, and
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640 C. P. Hughes and Z. Rudnick

where the Fourier transform is

f̂(�y) =

∫
R2

f(�x)e−2πi〈�x,�y〉d�x (2.4)

with 〈�x,�y〉 the usual Euclidean inner product. For ε > 0, set

Ψε(�x) =
1

ε2
Ψ

(
�x

ε

)
. (2.5)

Now, set χε = χ ∗ Ψε to be the convolution of χ and Ψε, which is a smoothed indicator

function of the unit disc with “fuzziness” of width ε in the sense that 0 ≤ χε ≤ 1, and if

ψ (rather than its Fourier transform ψ̂) had compact support, then χ − χε would be con-

centrated in the shell 1− ε < |�x| < 1+ ε. Due to the rapid decay of tails, this is essentially

still the case when ψ is in the Schwarz class, as it is for us.

Now take ε = 1/t
√
M, whereM = M(T) depends on T and tends to infinity with T ,

and define a smooth counting function, or smooth linear statistic, by

ÑM(t) =
∑

�n∈Z2

χε

(
�n

t

)
. (2.6)

This counts lattice points in a “fuzzy circle” of radius about t, with fuzziness about tε =

1/
√
M.

The number of lattice points in a smooth annulus of inner radius t and width ρ

is therefore given by ÑM(t + ρ) − ÑM(t). Since we are interested in radii t in an interval

[T, 2T ], we will in what follows freeze the width of the annulus to be ρ(T) as t varies in

[T, 2T ] rather than allowing it to vary with t; this will simplify some of the calculations.

Furthermore, since henceforth we are only concerned with ρ → 0, we will set ρ = 1/L and

let L(T) → ∞ as T → ∞.

Set

S̃M,L =

ÑM

(
t +

1

L

)
− ÑM(t) −

2πt

L
−
π

L2

√
t

. (2.7)

The width of the smoothed sides of ÑM is O(εt) = O(1/
√
M). In order for S̃M,L to approx-

imate S(t, 1/L), it must be that 1/L is much larger than the width of the sides, so we insist

that L/
√
M → 0.

We show the following theorem.
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On the Distribution of Lattice Points in Thin Annuli 641

Theorem 2.1. Suppose thatM(T) and L(T) are increasing to infinity with T such thatM =

O(Tδ) for all δ > 0 and L/
√
M → 0, then for any interval A,

lim
T→∞ Pω,T

{
S̃M,L

σ
∈ A

}
=

1√
2π

∫
A

e−x2/2dx, (2.8)

where S̃M,L is given by (2.7) and

σ2 =
16 logL
L

. (2.9)
�

Remark 2.2. The arguments given below for the proof of Theorem 2.1 will also prove a

central limit theorem for smooth linear statistics in higher dimensions. Defining χε =

χ ∗Ψε, where χ is the indicator function of the unit ball and Ψε is defined in analogy with

(2.5), we have a smooth counting function ÑM(t) :=
∑

�n∈Zd χε(�n/t), where, as before,

ε = 1/t
√
M.

The asymptotic behaviour of ÑM(t) is given by cdt
d with cd the volume of the unit

ball in Rd.

It may then be shown that if M = O(Tδ) for all δ > 0, then the distribution of

the normalized remainder term S̃M(t) = (ÑM(t) − cdt
d)/t(d−1)/2, when averaged over t

around T , weakly converges to a Gaussian with mean zero and variance

σ2 =



2

π2
K3 logM when d = 3,

d − 1

π2
Kd

∫∞
0

yd−4ψ̂(y)2dyM(d−3)/2 when d ≥ 4,
(2.10)

where

Kd =
4d−1πd−1/2

2d − 1

Γ

(
1

2
d −

1

2

)
Γ(d)Γ

(
1

2
d

) ζ(d − 1)
ζ(d)

. (2.11)

3 The distribution of ÑM

Lemma 3.1. As t → ∞,

ÑM(t) = πt2 −

√
t

π

∞∑
n=1

r(n)
n3/4

cos

(
2πt

√
n +

1

4
π

)
ψ̂

(√
n

M

)
+ O

(
1√
t

)
(3.1)

with the error term independent ofM. �
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642 C. P. Hughes and Z. Rudnick

Proof. By Poisson summation,

ÑM(t) :=
∑

�n∈Z2

(
χ ∗ Ψε

)(�n

t

)
= t2

∑
�k∈Z2

χ̂
(
t�k
)
Ψ̂ε

(
t�k
)
. (3.2)

Changing into polar coordinates and using the fact that χ is rotationally symmet-

ric, the 2-dimensional Fourier transform of χ is

χ̂(�y) =

∫1

0

r

∫2π

0

e−2πir|�y| cos θdθdr =

− cos

(
2π|�y| +

1

4
π

)
π|�y|3/2

+ O

(
1

|�y|5/2

)
(3.3)

as |�y| → ∞. By its definition in (2.5), Ψ̂ε(�y) = Ψ̂(ε�y) = ψ̂(ε|�y|). Therefore, inserting this

into (3.2), treating the mean (when �k = �0) separately, and setting ε = 1/t
√
M, we get that

ÑM(t) = πt2 −

√
t

π

∑
�k �=�0




cos

(
2πt
∣∣�k∣∣ + 1

4
π

)
∣∣�k∣∣3/2

ψ̂
(
εt
∣∣�k∣∣) + O

(
1

t

ψ̂
(
εt
∣∣�k∣∣)∣∣�k∣∣5/2

)


= πt2 −

√
t

π

∞∑
n=1

r(n)
n3/4

cos

(
2πt

√
n +

1

4
π

)
ψ̂

(√
n

M

)
+ O

(
1√
t

) (3.4)

with the constant implicit in the error term independent ofM(T). �

Note that the compact support of ψ̂means that the sum truncates atn ≈M. Thus,

we needM� 1 in order to have any terms in the sum.

Now, since

S̃M,L =

ÑM

(
t +

1

L

)
− ÑM(t) − π

(
2t

L
+
1

L2

)
√
t

, (3.5)

then for t ≥ 1 and L ≥ 1,

S̃M,L =
1

π

∞∑
n=1

r(n)
n3/4

[
cos

(
2πt

√
n +

π

4

)

− cos

(
2π

(
t +

1

L

)√
n +

π

4

)]
ψ̂

(√
n

M

)
+ O

(
1

t

)

=
2

π

∞∑
n=1

r(n)
n3/4

sin

(
π
√
n

L

)
sin

(
2π

(
t +

1

2L

)√
n +

π

4

)
ψ̂

(√
n

M

)
+ O

(
1

t

)
.

(3.6)
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On the Distribution of Lattice Points in Thin Annuli 643

Note that we have three independent variables. The variable t, which we always

consider to be large, is the radius of the annulus. This is the variable we average over. The

width of the annulus is 1/L. Since we want a thin annulus, we let L → ∞, and a Gaussian

behaviour is not seen if this condition does not hold. The annulus does not have sharp

sides, but smoothed edges, and the third independent variable isM; the largerM is, the

sharper the annulus’ sides are (in the sense that it approximates the indicator function

better). We must have L/
√
M → 0 in order for the annulus to have some width and not to

be “just sides”; that is, the annulus should not be too smooth.

Proof of Theorem 2.1. First, we show that the mean is O(1/T). Sinceω(t) is real,

〈
sin

(
2π

(
t +

1

2L

)√
n +

1

4
π

)〉
= Im

{
ω̂(−T

√
n)eiπ(

√
n/L+1/4)} � 1

TAnA/2
(3.7)

for any A > 2, where we have used the rapid decay of ω̂. Thus,

〈
S̃M,L

〉� ∞∑
n=1

r(n)
n3/4

1

TAnA/2
+ O

(
1

T

)
= O

(
1

T

)
. (3.8)

Setting

Mm :=

〈(
2

π

∞∑
n=1

r(n)
n3/4

sin

(
π
√
n

L

)
sin

(
2π

(
t +

1

2L

)√
n +

1

4
π

)
ψ̂

(√
n

M

))m〉
,

(3.9)

then, from (3.6), the Cauchy-Schwartz inequality implies that themth moment of S̃M,L is

〈(
S̃M,L

)m〉
=

〈{
2

π

∞∑
n=1

r(n)
n3/4

sin

(
π
√
n

L

)
sin

(
2π

(
t +

1

2L

)√
n+

1

4
π

)
ψ̂

(√
n

M

)
+O

(
1

T

)}m〉

= Mm + O

(
m∑

j=1

(
m

j

)√
M2m−2j

T j

)
.

(3.10)

The conditions of Theorem 2.1 are that M = O(Tδ) for all δ > 0, and that L → ∞
in such a way that L/

√
M → 0. In such case, Proposition 3.2 allows us to deduce that
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σ2 := M2 ∼ 16 logL/L and Proposition 3.3 shows that for allm > 2,

Mm

σm
=




m!

2m/2

(
m

2

)
!

+ O

(
1

L1−δ ′

)
ifm is even,

O

(
1

L1−δ ′

)
ifm is odd.

(3.11)

These are the moments of the standard normal distribution, and inserting these

into (3.10), we see that this is sufficient to prove that the distribution of S̃M,L/σ weakly

converges as T → ∞ to a Gaussian with mean zero and variance 1. �

3.1 The variance

Proposition 3.2. IfM = O(T2(1−δ)) for fixed δ > 0, then the variance of S̃M,L is asymptotic

to

σ2 :=
2

π2

∞∑
n=1

r(n)2

n3/2
sin2

(
π
√
n

L

)
ψ̂2

(√
n

M

)
. (3.12)

If L → ∞ but L/
√
M → 0, then

σ2 ∼
16 logL
L

. (3.13)
�

Proof. Expanding out (3.9), we have

M2 =
4

π2

∑
m,n

r(m)r(n) sin

(
π
√
m

L

)
sin

(
π
√
n

L

)
ψ̂

(√
m

M

)
ψ̂

(√
n

M

)
(mn)3/4

×
〈

sin

(
2π

(
t +

1

2L

)√
m +

1

4
π

)
sin

(
2π

(
t +

1

2L

)√
n +

1

4
π

)〉
.

(3.14)

Now, the average on the second line of the previous equation is

1

4

[
ω̂
(
T(
√
m −

√
n)
)
eiπ(1/L)(

√
n−

√
m)

+ ω̂
(
T(
√
n −

√
m)
)
eiπ(1/L)(

√
m−

√
n)

− ω̂
(
T(
√
m +

√
n)
)
e−iπ(1/2+(1/L)(

√
m+

√
n))

− ω̂
(

− T(
√
m +

√
n)
)
eiπ(1/2+(1/L)(

√
m+

√
n))
]
.

(3.15)
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The support condition on ψ̂means thatm and n are both constrained to be O(M), and so,

eitherm = n or |
√
m −

√
n| � 1/

√
M. Using the bound ω̂(t) � (1 + |t|)−A for all A > 0, the

off-diagonal terms contribute at most

∑
1≤n�=m≤M

(√
M

T

)A

� MA/2+2

TA
� T4−δA (3.16)

using the assumption thatM = O(T2(1−δ)). Therefore, for any B > 0,

M2 =
2

π2

∞∑
n=1

r(n)2

n3/2
sin2

(
π
√
n

L

)
ψ̂2

(√
n

M

)
+ O

(
T−B

)
. (3.17)

Define σ2 to be the above infinite sum. Since r(n) � nη for all η > 0, σ2 is bounded for all

L. To find the asymptotics as L → ∞, we use a formula of Ramanujan [14]:

∑
n≤X

r(n)2 = 4X logX +O(X). (3.18)

We then have

σ2 :=
2

π2

∞∑
n=1

r(n)2

n3/2
sin2

(
π
√
n

L

)
ψ̂2

(√
n

M

)

∼
8

π2

∫∞
1

log x
x3/2

sin2

(
π
√
x

L

)
ψ̂2

(√
x

M

)
dx

=
32

Lπ2

∫∞
1/L

log(yL)
sin2(πy)
y2

ψ̂2

(
yL√
M

)
dy

∼
logL
L

32

π2

∫∞
0

sin2(πy)
y2

ψ̂2

(
yL√
M

)
dy

(3.19)

on changing variables to x = y2L2 and using the fact that we assume that L → ∞.

Now, using the additional restriction (caused by the fuzziness of the annulus’ sides) that

L/
√
M → 0, we see that since ψ̂(yL/

√
M) ∼ 1 for all y = o(

√
M/L), the integral can be

evaluated asymptotically to equal π2/2, and so

σ2 ∼
16 log(L)

L
. (3.20)

Since L = o(T1−δ), the error terms in (3.10) are all smaller than σ2, and so the variance of

S̃M,L is asymptotic to σ2 as T → ∞. �

The constraints on M, that M = O(T2−2δ) but L/
√
M → 0, illustrate the role of

smoothing. The first constraint, thatM is not too big, comes from requiring that the an-

nulus is sufficiently smooth to handle the averages easily (to enable us to reduce to the
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diagonal). The second constraint, that M is not too small, is to ensure that the function

is not too smooth so that the width of the edges is greater than the size of the annulus.

(That L → ∞ forces M to go to infinity. If it did not, the function would be so smooth as

to have no fluctuations!)

3.2 The higher moments

Proposition 3.3. For fixed δ > 0, if M = O(T2(1−δ)/(2m−1−1)), and if L → ∞ such that

L/
√
M → 0, then for arbitrary δ ′ > 0,

Mm

σm
=




m!

2m/2

(
m

2

)
!

+ O

(
1

L1−δ ′

)
ifm is even,

O

(
1

L1−δ ′

)
ifm is odd,

(3.21)

where Mm is given in (3.9) and σ2 is given in (3.12). �

We will need to give lower bounds for alternating sums
∑±√

nj. To do so, we use

the following lemma, a form of Liouville’s theorem, (cf. [9]).

Lemma 3.4. For j = 1, . . . ,m, let nj ≤ M be positive integers. Then, either
∑
εj
√
nj = 0

for some εj = ±1 or, for all εj = ±1,
∣∣∣∣∣

m∑
j=1

εj
√
nj

∣∣∣∣∣ ≥ 1

(m
√
M)2m−1−1

. (3.22)
�

Proof. Assume that
∑
εj
√
nj �= 0 for all choices of εj = ±1. Then

P :=
∏

εj=±1

(
m∑

j=1

εj
√
nj

)
(3.23)

is nonzero. By Galois theory, since
∑
εj
√
nj is an algebraic number and P is the product

over all possible symmetries, P is an integer. Since we assumed that no term in P van-

ishes, |P| ≥ 1. Since both
∑
εj
√
nj and −

∑
εj
√
nj are terms in P, if

Q :=
∏

εj=±1
j=2,3,...,m

(
√
n1 +

m∑
j=2

εj
√
nj

)
, (3.24)

then P = (−1)2m−1

Q2, and so |Q| =
√

|P| ≥ 1.
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By assumption, nj ≤M for all j, and so, independently of the εj,∣∣∣∣∣√n1 +

m∑
j=2

εj
√
nj

∣∣∣∣∣ ≤ m√
M; (3.25)

and so, for any ηj = ±1,∣∣∣∣∣√n1 +

m∑
j=2

ηj
√
nj

∣∣∣∣∣ =
|Q|∏∗

∣∣∣∣∣√n1 +

m∑
j=2

εj
√
nj

∣∣∣∣∣
≥ 1

(m
√
M)2m−1−1

, (3.26)

where
∏∗ denotes the product over all εj distinct from ηj, there are 2m−1 − 1 terms in

such a product. �

From this, it is simple to derive the following lemma.

Lemma 3.5. For j = 1, . . . ,m, let nj ≤M be positive integers and let εj = ±1 be such that

m∑
j=1

εj
√
nj �= 0. (3.27)

Then, ∣∣∣∣∣
m∑

j=1

εj
√
nj

∣∣∣∣∣ ≥ 1

(m
√
M)2m−1−1

. (3.28)
�

Proof. Either
∑
ηj
√
nj �= 0 for any choice of ηj = ±1, and by Lemma 3.4 we are done, or

else there exists a (strict) subset S � {1, . . . ,m} such that

∑
j∈S

εj
√
nj −

∑
j �∈S

εj
√
nj = 0 (3.29)

so that ∣∣∣∣∣
m∑

j=1

εj
√
nj

∣∣∣∣∣ = 2

∣∣∣∣∣∑
j∈S

εj
√
nj

∣∣∣∣∣. (3.30)

Note that, by assumption,
∑

j∈S εj
√
nj �= 0 and, ifm ′ denotes the number of terms in the

sum, then 1 ≤ m ′ < m. Now, repeat the argument: either
∑

j∈S ηj
√
nj �= 0 for any choice

of ηj = ±1, in which case Lemma 3.4 gives that∣∣∣∣∣∑
j∈S

εj
√
nj

∣∣∣∣∣ ≥ 1

(m ′√M)2m ′−1−1
>

1

(m
√
M)2m−1−1

, (3.31)
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or else one can further subdivide the set S as before. Since the number of terms in the

sum is a positive integer and reduces upon each subdivision, this process terminates.

�

Proof of Proposition 3.3. Expanding (3.9) out,

Mm =
2m

πm

∑
n1,...,nm≥1

m∏
j=1

r
(
nj

)
n

3/4
j

sin

(
π
√
nj

L

)
ψ̂

(√
nj

M

)

×
〈

m∏
j=1

sin

(
2π

(
t +

1

2L

)√
nj +

1

4
π

)〉
.

(3.32)

Now, 〈
m∏

j=1

sin

(
2π

(
t +

1

2L

)√
nj +

1

4
π

)〉

=

〈
m∏

j=1

1

2i

[
e2πi((t+1/2L)√nj+1/8) − e−2πi((t+1/2L)√nj+1/8)

]〉

=
∑

εj=±1

1

2mim

∫∞
−∞

m∏
j=1

εj exp

(
εj2πi

((
t +

1

2L

)√
nj +

1

8

))
1

T
ω

(
t

T

)
dt

=
∑

εj=±1

∏
εj

2mim
ω̂

(
− T

m∑
j=1

εj
√
nj

)
e

∑m
j=1 εjπi((1/L)√nj+1/4).

(3.33)

By the compact support condition of ψ̂, we may always assume that nj = O(M).

By Lemma 3.5 and the fact that ω̂ decays faster than any polynomial power, the off-

diagonal terms (those terms with
∑m

j=1 εj
√
nj �= 0) contribute at most

∑
1≤n1,...,nm≤M

(
(
√
M)2m−1−1

T

)A

� M(2m−1−1)A/2+m

TA
� T−δA+2m/(2m−1−1) (3.34)

which is vanishingly small since A can be arbitrarily large. Thus, the only contributing

terms are those with
∑m

j=1 εj
√
nj = 0, and using the fact that ω̂(0) = 1, we therefore have,

for any B > 0,

Mm =
∑

n1,...,nm

∑
εj=±1∑
εj

√
nj=0

m∏
j=1

−iεjr
(
nj

)
πn

3/4
j

sin

(
π
√
nj

L

)
ψ̂

(√
nj

M

)
eiπεj/4 + O

(
T−B

)
.

(3.35)

In order to estimate the size of Mm/σ
m when L → ∞, we need to use Besicovich’s

theorem [2].
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Lemma 3.6. If qj, for j = 1, . . . ,m, are distinct square-free positive integers, then
√
q1, . . . ,

√
qm are linearly independent over the rationals. �

Therefore, if
∑m

j=1 εj
√
nj = 0 with nj ≥ 1, then there must exist a division of

{1, . . . ,m} into {Si} such that

{1, . . . ,m} =

�∐
i=1

Si, (3.36)

where
∑�

i=1 |Si| = m such that for i = 1, 2, . . . , �, for all j ∈ Si, nj = qif
2
j , with the qi being

distinct square-free integers, and with the fj satisfying

∑
j∈Si

εjfj = 0. (3.37)

Summing over all possible divisions, we see that

Mm

σm
=

m∑
�=1

∑
{1,...,m}=

∐�
i=1 Si

(
1

σ|S1|

∑
q1

Dq1

(
S1

))

×
 1

σ|S2|

∑
q2, q2 �=q1

Dq2

(
S2

) · · ·
 1

σ|S�|

∑
q�, q� �=q1,...,q�−1

Dq�

(
S�

) ,
(3.38)

where

Dq(S) :=
1

q3|S|/4

∑
fj≥1

εj=±1∑
j∈S εjfj=0

∏
j∈S

−iεje
iπεj/4r

(
qf2j
)

πf
3/2
j

sin

(
π
1

L
fj
√
q

)
ψ̂

(
fj

√
q

M

)
.

(3.39)

We will show in Lemma 3.7 that if L → ∞ such that L/
√
M → 0, then for all δ ′ > 0,

1

σ|S|

∑
q

Dq(S) =



0 if |S| = 1,

1 if |S| = 2,

O

(
1

L1−δ ′

)
otherwise.

(3.40)

Therefore, the only terms in Mm/σ
m which do not vanish as L → ∞ are those

where |Si| = 2 for all i. Ifm is odd, there are no such terms, and ifm = 2k is even, then the

number of terms is equal to the number of ways of partitioning {1, . . . , 2k} into
∐k

i=1 Si
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with |Si| = 2, which equals

1

k!

(
2k

2

)(
2k − 2

2

)
. . .

(
2

2

)
=

(2k)!
k!2k

. (3.41)

This completes the proof of Proposition 3.3. �

Lemma 3.7. If L → ∞ is such that L/
√
M → 0, then

∑
q

Dq(S)

σ|S|
=



1 if |S| = 2,

O

(
1

L1−δ

)
otherwise

(3.42)

for all δ > 0, whereDq(S) is defined in (3.39) and σ2 is defined in (3.12). �

Proof. For convenience, we assume, without loss of generality, that S = {1, 2, . . . , |S|}. Us-

ing r(n) � nδ for all δ > 0, and ψ̂(x) � 1, we can upper bound by

∑
q

Dq(S) �
∞∑

q=1

q|S|δ

q3|S|/4
Q(q), (3.43)

where

Q(q) =
∑

εj=±1

∑
fj≥1∑ |S|

j=1 εjfj=0

|S|∏
j=1

fδj

f
3/2
j

∣∣∣∣ sin

(
πfj

√
q

L

)∣∣∣∣. (3.44)

Note that Q(q) � 1 for all q. When q � L2, a sharper result can be deduced by a

more careful treatment ofQ(q). In order to have
∑|S|

j=1 εjfj = 0, at least two of the εmust

have different signs, and so, with no loss of generality, we put ε|S| = −1 and ε|S|−1 = +1.

Hence,

f|S| = f|S|−1 +

|S|−2∑
j=1

εjfj. (3.45)

In order to have both f|S| ≥ 1 and f|S|−1 ≥ 1, it must be that

f|S|−1 ≥ 1 + max

{
0,−

|S|−2∑
j=1

εjfj

}
. (3.46)
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Therefore,

Q(q) = 2
∑

ε1,...,ε|S|−2=±1

∑
f1,...,f|S|−2≥1

∑
f|S|−1≥1+max{0,−

∑ |S|−2
j=1 εjfj}

×

|S|−1∏
j=1

∣∣∣∣ sin

(
πfj

√
q

L

)∣∣∣∣
f
3/2−δ
j


∣∣∣∣∣ sin

(
π

√
q

L

(
f|S|−1 +

|S|−2∑
j=1

εjfj

))∣∣∣∣∣(
f|S|−1 +

|S|−2∑
j=1

εjfj

)3/2−δ
.

(3.47)

Changing sums into integrals gives

Q(q) �
∫
· · ·

∫∞
1

dx1 · · ·dx|S|−2

∑
εj=±1

∫∞
1+max{0,−

∑ |S|−2
j=1 εjxj}

dx|S|−1

×

|S|−1∏
j=1

∣∣∣∣ sin

(
π
1

L
xj
√
q

)∣∣∣∣
x

3/2−δ
j


∣∣∣∣∣ sin

(
π
1

L

√
q

(
x|S|−1 +

|S|−2∑
j=1

εjxj

))∣∣∣∣∣(
x|S|−1 +

|S|−2∑
j=1

εjxj

)3/2−δ
,

(3.48)

and changing variables to xj
√
q/L → yj,

Q(q) � q|S|/4+1/2−|S|δ/2

L|S|/2+1−|S|δ

×
∫
· · ·

∫∞
√

q/L

∑
εj=±1

∫∞
max{0,−

∑
εjyj}+

√
q/L

×
(

|S|−1∏
j=1

∣∣ sin
(
πyj

)∣∣
y

3/2−δ
j

)
∣∣∣∣∣ sin

(
π

(
y|S|−1+

|S|−2∑
j=1

εjyj

))∣∣∣∣∣(
y|S|−1 +

|S|−2∑
j=1

εjyj

)3/2−δ
dy|S|−1dy|S|−2 · · ·dy1.

(3.49)

Since the multiple integral is bounded, we may conclude that

Q(q) �



q|S|/4+1/2−|S|δ/2

L|S|/2+1−|S|δ
if q < L2,

1 if q ≥ L2.

(3.50)
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Substituting this into (3.43), we see that

∑
q

Dq(S) �



Lδ ′

L
if |S| = 2,

Lδ ′

L|S|/2+1
if |S| ≥ 3.

(3.51)

Hence,

1

σ|S|

∑
q

Dq(S) �

L

δ ′
if |S| = 2,

1

L1−δ ′ if |S| ≥ 3
(3.52)

since equation (3.13) gives σ ∼ 4
√

logL/
√
Lwhen L → ∞ but L/

√
M → 0. However, in the

case |S| = 2, by the definition ofDq(S) and σ2, we see that

∑
q

Dq(S) = σ2. (3.53)

This completes the proof of the lemma. �

4 Unsmoothing

Recall that S(t, 1/L) is the normalized remainder term for the number of lattice points

in an annulus of inner radius t and width 1/L. In this section, we prove Theorem 1.1 by

showing that the variance of the difference (S(t, 1/L)− S̃M,L(t))/σ vanishes and then com-

bining this with Chebyshev’s inequality to deduce a distribution theorem for S(t, 1/L).

We begin with an approximation result forN(t).

Lemma 4.1. For any a > 0, c > 1,

N(t) = πt2 −

√
t

π

∑
n≤X

r(n)
n3/4

cos

(
2πt

√
n +

1

4
π

)

+ O
(
|t|−1/2

)
+ O

(
Xa
)

+ O

(
|t|2c−1

√
X

)
.

(4.1)
�

This lemma was already invoked by Heath-Brown [9], with the proof being an

argument similar to that which derives [17, equation (12.4.4)].

Lemma 4.2. Suppose that L → ∞ as T → ∞ and choose M so that L/
√
M → 0 as T → ∞

butM = O(T2(1−δ)) (for a fixed δ > 0). Then, as T → ∞,〈∣∣∣∣S(t, 1L
)

− S̃M,L(t)
∣∣∣∣2
〉

� logM√
M

. (4.2)
�
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Proof. Putting a = δ ′ and c = 1 + δ ′/2 for δ ′ > 0 arbitrarily small in Lemma 4.1, we have

S

(
t,
1

L

)
:=

N

(
t +

1

L

)
−N(t) − π

(
2t

L
+
1

L2

)
√
t

=
2

π

∑
n≤X

r(n)
n3/4

sin

(
π
√
n

L

)
sin

(
2π

(
t +

1

2L

)√
n +

1

4
π

)
+ R(X, t),

(4.3)

where

R(X, t) � 1

|t|
+
Xδ ′√

|t|
+

|t|1/2+δ ′

√
X

. (4.4)

Set X = T2−δ. Since M = O(T2(1−δ)) and ψ̂ has compact support, the infinite sum in

S̃M,L(t), given in (3.6), is truncated before n = T2−δ, and so

S

(
t,
1

L

)
− S̃M,L(t)

=
2

π

∑
n≤T2−δ

r(n)
n3/4

sin

(
π
√
n

L

)
sin

(
2π

(
t +

1

2L

)√
n +

π

4

)(
1 − ψ̂

(√
n

M

))

+ R
(
T2−δ, t

)
.

(4.5)

Let P denote the sum, then the Cauchy-Schwartz inequality gives

〈(
S

(
t,
1

L

)
− S̃M,L(t)

)2
〉

=
〈
P2
〉

+
〈
R
(
T2−δ, t

)2〉
+ O

(√〈
P2
〉√〈

R
(
T2−δ, t

)2〉)
.

(4.6)

Observe that

〈
R
(
T2−δ, t

)2〉� T−1+δ ′′
(4.7)

for arbitrarily small δ ′′ > 0, and

〈
P2
〉

=
2

π2

∑
n≤T2−δ

r(n)2

n3/2
sin2

(
π
√
n

L

)(
1 − ψ̂

(√
n

M

))2

+ O

( ∑
1≤m�=n≤T2−δ

ω̂
(
T
(√
n −

√
m
)))

.

(4.8)
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The same argument used in Section 3.1 shows that the error term here vanishes like

O(T−B) for any B > 0.

Since
∑

n≤X r(n)2 ∼ 4X logX, partial summation gives

〈
P2
〉

∼
8

π2

∫T2−δ

1

log x
x3/2

sin2

(
π
√
x

L

)(
1 − ψ̂

(√
x

M

))2

dx

=
32

Lπ2

∫T/L

1/L

log(Ly) sin2(πy)
y2

(
1 − ψ̂

(
yL√
M

))2

dy

(4.9)

by the change of variables x = y2L2. If yL/
√
M� 1, then

ψ̂

(
yL√
M

)
= 1 + O

(
yL√
M

)
, (4.10)

leading to

〈
P2
〉� L

M

∫√
M/L

0

log(Ly) sin2(πy)dy +
1

L

∫T/L

√
M/L

log(Ly) sin2(πy)
y2

dy

� logM√
M

.

(4.11)

Inserting this into (4.6), usingM = O(T2(1−δ)), and choosing 0 < δ ′′ < δ in the estimate of

〈R(X, t)2〉, we have that

〈(
S

(
t,
1

L

)
− S̃M,L(t)

)2
〉

� logM√
M

+
1

T1−δ ′′ +

√
logM

M1/4T1/2−δ ′′/2

= O

(
logM√
M

)
.

(4.12)

�

Lemma 4.3. Under the conditions of Lemma 4.2, for all fixed η > 0,

Pω,T



∣∣∣∣∣∣∣∣
S

(
t,
1

L

)
σ

−
S̃M,L(t)
σ

∣∣∣∣∣∣∣∣ > η

 −→ 0 (4.13)

as T → ∞, where σ2 = 16 logL/L. �
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Proof. For fixed η > 0, Chebychev’s inequality gives

Pω,T



∣∣∣∣∣∣∣∣
S

(
t,
1

L

)
σ

−
S̃M,L(t)
σ

∣∣∣∣∣∣∣∣ > η

 ≤

〈(
S

(
t,
1

L

)
− S̃M,L(t)

)2
〉

η2σ2

� L

logL
logM√
M

(4.14)

which tends to zero as T → ∞ by the assumptions placed onM and L. �

Corollary 4.4. If L → ∞ but L = O(Tδ) for all δ > 0 as T → ∞, then for any interval A,

Pω,T



S

(
t,
1

L

)
σ

∈ A


 −→ 1√

2π

∫
A

e−x2/2dx, (4.15)

where σ2 = 16 logL/L. �

Proof. SetM = L3, thenM = O(Tδ) for all δ > 0 and L/
√
M → 0. Thus, S̃M,L/σweakly con-

verges to a standard normal distribution as T → ∞ when t is smoothly averaged around

T by Theorem 2.1. But Lemma 4.3 implies that S(t, 1/L)/σmust also weakly converge to a

standard normal distribution. �

We are now able to prove our main result, Theorem 1.1, which says that if L → ∞
but L = O(Tδ) for all δ > 0, then for any interval A,

lim
T→∞

1

T
meas


t ∈ [T, 2T ] :

S

(
t,
1

L

)
σ

∈ A


 =

1√
2π

∫
A

e−x2/2dx. (4.16)

Proof of Theorem 1.1. Fix ε > 0 and approximate the indicator function 1[1,2] above and

below by smooth functions χ± ≥ 0 so that χ− ≤ 1[1,2] ≤ χ+, where both χ± and their

Fourier transforms are smooth and of rapid decay, and so that their total masses are

within ε of unity |
∫
χ±(x)dx − 1| < ε. Now, setω± := χ±/

∫
χ±. Thenω± are “admissible,”

and for all t,

(1 − ε)ω−(t) ≤ 1[1,2](t) ≤ (1 + ε)ω+(t). (4.17)
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Now,

meas


t ∈ [T, 2T ] :

S

(
t,
1

L

)
σ

∈ A


 =

∫∞
−∞ 1A

S
(
t,
1

L

)
σ

 1[1,2]

(
t

T

)
dt, (4.18)

and since (4.17) holds, we find that

(1 − ε)Pω−,T



S

(
t,
1

L

)
σ

∈ A


 ≤ 1

T
meas


t ∈ [T, 2T ] :

S

(
t,
1

L

)
σ

∈ A




≤ (1 + ε)Pω+,T



S

(
t,
1

L

)
σ

∈ A


 .

(4.19)

By Corollary 4.4, the two extreme sides of this inequality have a limit, as T → ∞, of

(1± ε) 1√
2π

∫
A

e−x2/2dx, (4.20)

and so, we get that

(1 − ε)
1√
2π

∫
A

e−x2/2dx ≤ lim inf
T→∞

1

T
meas


t ∈ [T, 2T ] :

S

(
t,
1

L

)
σ

∈ A


 (4.21)

with a similar statement for limsup; since ε > 0 is arbitrary, this shows that the limit

exists and equals

lim
T→∞

1

T
meas


t ∈ [T, 2T ] :

S

(
t,
1

L

)
σ

∈ A


 =

1√
2π

∫
A

e−x2/2dx, (4.22)

which is the Gaussian law. �
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